Iago Attacks: Why The System Call API Is a Bad Untrusted RPC Interface

Stephen Checkoway and Hovav Shacham
CS2012-0984
July 22, 2012

In recent years, researchers have proposed systems for running trusted code on an untrusted operating system. Protection mechanisms deployed by such systems keep a malicious kernel from directly manipulating a trusted application’s state. Under such systems, the application and kernel are, conceptually, peers, and the system call API defines an RPC interface between them. We introduce Iago attacks, attacks that a malicious kernel can mount in this model. We show how a carefully chosen sequence of integer return values to Linux system calls can lead a supposedly protected process to act against its interests, and even to undertake arbitrary computation at the malicious kernel’s behest. Iago attacks are evidence that protecting applications from malicious kernels is more difficult than previously realized.


How to view this document


The authors of these documents have submitted their reports to this technical report series for the purpose of non-commercial dissemination of scientific work. The reports are copyrighted by the authors, and their existence in electronic format does not imply that the authors have relinquished any rights. You may copy a report for scholarly, non-commercial purposes, such as research or instruction, provided that you agree to respect the author's copyright. For information concerning the use of this document for other than research or instructional purposes, contact the authors. Other information concerning this technical report series can be obtained from the Computer Science and Engineering Department at the University of California at San Diego, techreports@cs.ucsd.edu.


[ Search ]


NCSTRL
This server operates at UCSD Computer Science and Engineering.
Send email to webmaster@cs.ucsd.edu