Trajectory and Policy Aware Sender Anonymity in Location Based Services

Alin Deutsch, Richard Hull, Avinash Vyas and Kevin. Keliang Zhao
CS2012-0974
February 27, 2012

We consider Location-based Service (LBS) settings, where a LBS provider logs the requests sent by mobile device users over a period of time and later wants to publish/share these logs. Log sharing can be extremely valuable for advertising, data mining research and network management, but it poses a serious threat to the privacy of LBS users. Sender anonymity solutions prevent a malicious attacker from inferring the interests of LBS users by associating them with their service requests after gaining access to the anonymized logs. With the fast-increasing adoption of smartphones and the concern that historic user trajectories are becoming more accessible, it becomes necessary for any sender anonymity solution to protect against attackers that are trajectory-aware (i.e. have access to historic user trajectories) as well as policy-aware (i.e they know the log anonymization policy). We call such attackers TP-aware. This paper introduces a first privacy guarantee against TP-aware attackers, called TP-aware sender k-anonymity. It turns out that there are many possible TP-aware anonymizations for the same LBS log, each with a different utility to the consumer of the anonymized log. The problem of finding the optimal TP-aware anonymization is investigated. We show that trajectory-awareness renders the problem computationally harder than the trajectory-unaware variants found in the literature (NP-complete in the size of the log, versus PTIME). We describe a PTIME l-approximation algorithm for trajectories of length l and empirically show that it scales to large LBS logs (up to 2 million users).


How to view this document


The authors of these documents have submitted their reports to this technical report series for the purpose of non-commercial dissemination of scientific work. The reports are copyrighted by the authors, and their existence in electronic format does not imply that the authors have relinquished any rights. You may copy a report for scholarly, non-commercial purposes, such as research or instruction, provided that you agree to respect the author's copyright. For information concerning the use of this document for other than research or instructional purposes, contact the authors. Other information concerning this technical report series can be obtained from the Computer Science and Engineering Department at the University of California at San Diego, techreports@cs.ucsd.edu.


[ Search ]


NCSTRL
This server operates at UCSD Computer Science and Engineering.
Send email to webmaster@cs.ucsd.edu