Algorithms for manifold learning

Lawrence Cayton
June 3, 2008

Manifold learning is a popular recent approach to nonlinear dimensionality reduction. Algorithms for this task are based on the idea that the dimensionality of many data sets is only artificially high; though each data point consists of perhaps thousands of features, it may be described as a function of only a few underlying parameters. That is, the data points are actually samples from a low-dimensional manifold that is embedded in a high-dimensional space. Manifold learning algorithms attempt to uncover these parameters in order to find a low-dimensional representation of the data. In this paper, we discuss the motivation, background, and algorithms proposed for manifold learning. Isomap, Locally Linear Embedding, Laplacian Eigenmaps, Semidefinite Embedding, and a host of variants of these algorithms are examined.

How to view this document

The authors of these documents have submitted their reports to this technical report series for the purpose of non-commercial dissemination of scientific work. The reports are copyrighted by the authors, and their existence in electronic format does not imply that the authors have relinquished any rights. You may copy a report for scholarly, non-commercial purposes, such as research or instruction, provided that you agree to respect the author's copyright. For information concerning the use of this document for other than research or instructional purposes, contact the authors. Other information concerning this technical report series can be obtained from the Computer Science and Engineering Department at the University of California at San Diego,

[ Search ]

This server operates at UCSD Computer Science and Engineering.
Send email to