Learning to Traverse Image Manifolds

Piotr Dollar, Vincent Rabaud and Serge Belongie
January 10, 2007

We present a new algorithm, Locally Smooth Manifold Learning (LSML), that learns a warping function from a point on an manifold to its neighbors. Important characteristics of LSML include the ability to recover the structure of the manifold in sparsely populated regions and beyond the support of the provided data. Applications of our proposed technique include embedding with a natural out-of-sample extension and tasks such as tangent distance estimation, frame rate up-conversion, video compression and motion transfer.

How to view this document

The authors of these documents have submitted their reports to this technical report series for the purpose of non-commercial dissemination of scientific work. The reports are copyrighted by the authors, and their existence in electronic format does not imply that the authors have relinquished any rights. You may copy a report for scholarly, non-commercial purposes, such as research or instruction, provided that you agree to respect the author's copyright. For information concerning the use of this document for other than research or instructional purposes, contact the authors. Other information concerning this technical report series can be obtained from the Computer Science and Engineering Department at the University of California at San Diego, techreports@cs.ucsd.edu.

[ Search ]

This server operates at UCSD Computer Science and Engineering.
Send email to webmaster@cs.ucsd.edu