Detecting Phases in Parallel Applications on Shared Memory Architectures

Erez Perelman, Marzia Polito, Jean-Yves Bouguet, John Sampson, Brad Calder and Carole Dulong
November 20, 2005

Most programs are repetitive, where similar behavior can be seen at different execution times. Algorithms have been proposed that automatically group similar portions of a program's execution into phases, where samples of execution in the same phase have homogeneous behavior and similar resource requirements. In this paper, we examine applying these phase analysis algorithms and how to adapt them to parallel applications running on shared memory processors. Our approach relies on a separate representation of each thread's activity. We first focus on showing its ability to identify similar intervals of execution across threads for a single run. We then show that it is effective at identifying similar behavior of a program when the number of threads is varied between runs. This can be used by developers to examine how different phases scale across different number of threads. Finally, we examine using the phase analysis to pick simulation points to guide multi-threaded simulation.

How to view this document

The authors of these documents have submitted their reports to this technical report series for the purpose of non-commercial dissemination of scientific work. The reports are copyrighted by the authors, and their existence in electronic format does not imply that the authors have relinquished any rights. You may copy a report for scholarly, non-commercial purposes, such as research or instruction, provided that you agree to respect the author's copyright. For information concerning the use of this document for other than research or instructional purposes, contact the authors. Other information concerning this technical report series can be obtained from the Computer Science and Engineering Department at the University of California at San Diego,

[ Search ]

This server operates at UCSD Computer Science and Engineering.
Send email to