A Near-Optimal Algorithm for a Locality-Maximizing Placement Problem

Fan Chung, Ronald Graham, Ranjita Bhagwan, Stefan Savage and Geoffrey M. Voelker
January 16, 2004

The effectiveness of a distributed system hinges on the manner in which tasks and data are assigned to the underlying system resources. Moreover, today's large-scale distributed systems must accommodate heterogeneity in both the offered load and in the makeup of the available storage and compute capacity. The ideal resource assignment must balance the utilization of the underlying system against the loss of locality incurred when individual tasks or data objects are fragmented among several servers. In this paper we describe this {\em locality-maximizing placement} problem and show that an optimal solution is NP-hard. We then describe a polynomial-time algorithm that generates a placement within an additive constant of two from optimal.

How to view this document

The authors of these documents have submitted their reports to this technical report series for the purpose of non-commercial dissemination of scientific work. The reports are copyrighted by the authors, and their existence in electronic format does not imply that the authors have relinquished any rights. You may copy a report for scholarly, non-commercial purposes, such as research or instruction, provided that you agree to respect the author's copyright. For information concerning the use of this document for other than research or instructional purposes, contact the authors. Other information concerning this technical report series can be obtained from the Computer Science and Engineering Department at the University of California at San Diego, techreports@cs.ucsd.edu.

[ Search ]

This server operates at UCSD Computer Science and Engineering.
Send email to webmaster@cs.ucsd.edu