A Feature-based Approach for Determining Dense Long Range Correspondences

Josh Wills and Serge Belongie
CS2003-0768
October 20, 2003

Planar motion models can provide gross motion estimation and good segmentation for image pairs with large inter-frame disparity. However, as the disparity becomes larger, the resulting dense correspondences will become increasingly inaccurate for everything but purely planar objects. Flexible motion models, on the other hand, tend to overfit and thus make partitioning difficult. For this reason, to achieve dense optical flow for image sequences with large inter-frame disparity, we propose a two stage process in which a planar model is used to get an approximation for the segmentation and the gross motion, and then a spline is used to refine the fit. We present experimental results for dense optical flow estimation on image pairs with large inter-frame disparity that are beyond the scope of existing approaches.


How to view this document


The authors of these documents have submitted their reports to this technical report series for the purpose of non-commercial dissemination of scientific work. The reports are copyrighted by the authors, and their existence in electronic format does not imply that the authors have relinquished any rights. You may copy a report for scholarly, non-commercial purposes, such as research or instruction, provided that you agree to respect the author's copyright. For information concerning the use of this document for other than research or instructional purposes, contact the authors. Other information concerning this technical report series can be obtained from the Computer Science and Engineering Department at the University of California at San Diego, techreports@cs.ucsd.edu.


[ Search ]


NCSTRL
This server operates at UCSD Computer Science and Engineering.
Send email to webmaster@cs.ucsd.edu