Automatically Inferring Patterns of Resource Consumption in Network Traffic

Cristian Estan, Stefan Savage and George Varghese
June 2, 2003

The Internet service model emphasizes flexibility -- any node can send any type of traffic at any time. While this design has allowed new applications and usage models to flourish, it also makes the job of network management significantly more challenging. This paper describes a new method of traffic characterization that automatically groups traffic into minimal clusters of conspicuous consumption. Rather than providing a static analysis specialized to capture flows, applications, or network-to-network traffic matrices, our approach dynamically produces hybrid traffic definitions that match the underlying usage. For example, rather than report five hundred small flows, or the amount of TCP traffic to port 80, or the ``top ten hosts'', our method might reveal that a certain percent of traffic was used by TCP connections between AOL clients and a particular group of Web servers. Similarly, our technique can be used to automatically classify new traffic patterns, such as network worms or peer-to-peer applications, without knowing the structure of such traffic a priori. We describe a series of algorithms for constructing these traffic clusters, minimizing their representation and the design of our prototype system, AutoFocus. In addition, we describe our experiences using AutoFocus to discover the dominant and unusual modes of usage on several different production networks.

How to view this document

The authors of these documents have submitted their reports to this technical report series for the purpose of non-commercial dissemination of scientific work. The reports are copyrighted by the authors, and their existence in electronic format does not imply that the authors have relinquished any rights. You may copy a report for scholarly, non-commercial purposes, such as research or instruction, provided that you agree to respect the author's copyright. For information concerning the use of this document for other than research or instructional purposes, contact the authors. Other information concerning this technical report series can be obtained from the Computer Science and Engineering Department at the University of California at San Diego,

[ Search ]

This server operates at UCSD Computer Science and Engineering.
Send email to