Counting the number of active flows on a high speed link

Cristian Estan, George Varghese and Mike Fisk
CS2002-0705
May 21, 2002

In this paper we address the problem of counting the number of distinct header patterns (flows) seen on a high speed link. Such counting can be used to detect DoS attacks and port scans, and to solve measurement problems. The central difficulty is that count processing must be done in a packet arrival time (8 nsec at OC-768 speeds) and hence must take a small number of memory references to limited, fast memory. A naive solution that maintains a hash table requires several Mbytes because the number of flows can be more than a million. By contrast, our new algorithms take very little memory and are fast. The reduction in memory is particularly important for applications that run multiple concurrent counting instances. For example, we used one of our new algorithms to replace the port scan detection component of the popular intrusion detection system Snort. Doing so reduced the memory usage on a ten minute trace from 51 Mbytes to 5.7 Mbytes while maintaining a 99.78% probability of alarming on a scan within 6 seconds of when the large-memory algorithm would alarm. By contrast, the best known prior algorithm (probabilistic counting) takes 4 times more memory on the port scan application and 8 times more memory on a measurement application. Fundamentally, this is because our algorithms can be customized to take advantage of special features of applications such as a large number of instances that have very small counts, or prior knowledge of the likely range of the count.


How to view this document


The authors of these documents have submitted their reports to this technical report series for the purpose of non-commercial dissemination of scientific work. The reports are copyrighted by the authors, and their existence in electronic format does not imply that the authors have relinquished any rights. You may copy a report for scholarly, non-commercial purposes, such as research or instruction, provided that you agree to respect the author's copyright. For information concerning the use of this document for other than research or instructional purposes, contact the authors. Other information concerning this technical report series can be obtained from the Computer Science and Engineering Department at the University of California at San Diego, techreports@cs.ucsd.edu.


[ Search ]


NCSTRL
This server operates at UCSD Computer Science and Engineering.
Send email to webmaster@cs.ucsd.edu