Minimum-Buffered Routing Of Non-critical Nets

Andrew Kahng Charles Alpert Bao Liu Ion Mandoiu Alexander Zelikovsky
CS2001-0681
August 14, 2001

In high-speed digital VLSI design, bounding the load capacitance at gate outputs is a well-known methodology to improve coupling noise immunity, reduce degradation of signal transition edges, and reduce delay uncertainty due to coupling noise. Bounding load capacitance also improves reliability with respect to hot-carrier oxide breakdown and AC self-heating in interconnects, and guarantees bounded input rise/fall times at buffers and sinks. This report introduces a new minimum-buffer routing problem (MBRP) formulation which requires that the capacitive load of each buffer, and of the source driver, be upper-bounded by a given constant. Our contributions include the following. (a) We give linear-time algorithms for optimal buffering of a given routing tree with a single (inverting or non-inverting) buffer type. (b) For simultaneous routing and buffering with a single non-inverting buffer type, we give a factor $2(1+\varepsilon)$ approximation algorithm and prove that no algorithm can guarantee a factor smaller than 2 unless P=NP. For the case of a single inverting buffer type, we give a factor $4(1+\varepsilon)$ approximation algorithm. (c) We give local-improvement and clustering MBRP heuristics with improved practical performance and present a comprehensive experimental study comparing the runtime/quality tradeoffs of the proposed MBRP heuristics on test cases extracted from recent industrial designs.


How to view this document


The authors of these documents have submitted their reports to this technical report series for the purpose of non-commercial dissemination of scientific work. The reports are copyrighted by the authors, and their existence in electronic format does not imply that the authors have relinquished any rights. You may copy a report for scholarly, non-commercial purposes, such as research or instruction, provided that you agree to respect the author's copyright. For information concerning the use of this document for other than research or instructional purposes, contact the authors. Other information concerning this technical report series can be obtained from the Computer Science and Engineering Department at the University of California at San Diego, techreports@cs.ucsd.edu.


[ Search ]


NCSTRL
This server operates at UCSD Computer Science and Engineering.
Send email to webmaster@cs.ucsd.edu