PCA = Gabor for Expression Recognition

Matthew N. Dailey and Garrison W. Cottrell
October 26, 1999

We show that Gabor filter representations give quantitatively indistinguishable results for classification of facial expressions as local PCA representations, in contrast to other recent work. We also show that a simple discriminant analysis automatically locates regions roughly corresponding to relevant Facial Actions. Finally, we in troduce a method that typically boosts generalization performance 9% by "peeking" at all of the unlabeled training patt erns before classifying them.

How to view this document

The authors of these documents have submitted their reports to this technical report series for the purpose of non-commercial dissemination of scientific work. The reports are copyrighted by the authors, and their existence in electronic format does not imply that the authors have relinquished any rights. You may copy a report for scholarly, non-commercial purposes, such as research or instruction, provided that you agree to respect the author's copyright. For information concerning the use of this document for other than research or instructional purposes, contact the authors. Other information concerning this technical report series can be obtained from the Computer Science and Engineering Department at the University of California at San Diego, techreports@cs.ucsd.edu.

[ Search ]

This server operates at UCSD Computer Science and Engineering.
Send email to webmaster@cs.ucsd.edu